EE 505

Lecture 13

String DACs Current Steering DACs

What DAC Architectures are Actually Used?

Listing from Texas Instruments March 1 2023

String	168
R-2R	79
Current Source	52
MDAC	23
Current Sink	17
SAR	9
Pipeline	7
Delta Sigma	4
1-Steering	3
Current Steering	2

Product

Folder

DAC8532 SBAS246B – DECEMBER 2001 – REVISED NOVEMBER 2014

Support & Community

DAC8532 Dual Channel, 16-Bit, Low Power, Serial Input Digital-To-Analog Converter

1 Features

- 16-Bit Monotonic Over Temperature
- MicroPower Operation: 500 µA at 5 V
- · Power-On Reset to Zero-Scale
- Power Supply: 2.7 V to 5.5 V
- Settling Time: 10 µs to ±0.003% FSR
- Ultra-Low AC Crosstalk: –100 dB Typ
- Low-Power Serial Interface With Schmitt-Triggered Inputs
- On-Chip Output Buffer Amplifier With Rail-to-Rail Operation
- · Double-Buffered Input Architecture
- Simultaneous or Sequential Output Update
 and Powerdown
- Available in a Tiny VSSOP-8 Package

2 Applications

- · Portable Instrumentation
- Closed-Loop Servo Control
- Process Control
- · Data Acquisition Systems
- Programmable Attenuation
- PC Peripherals

3 Description

The DAC8532 is a dual channel, 16-bit digital-toanalog converter (DAC) offering low power operation and a flexible serial host interface. Each on-chip precision output amplifier allows rail-to-rail output swing to be achieved over the supply range of 2.7 V to 5.5 V. The device supports a standard 3-wire serial interface capable of operating with input data clock frequencies up to 30 MHz for V_{DD} = 5 V.

The DAC8532 requires an external reference voltage to set the output range of each DAC channel. The device incorporates a power-on reset circuit which ensures that the DAC outputs power up at zero-scale and remain there until a valid write takes place. The DAC8532 provides a flexible power-down feature, accessible over the serial interface, that reduces the current consumption of the device to 200 nA at 5 V.

The low-power consumption of the device in normal operation makes it ideally suited to portable battery-operated equipment and other low-power applications. The power consumption is 2.5 mW at 5 V, reducing to 1 μW in power-down mode.

The DAC8532 is available in a VSSOP-8 package with a specified operating temperature range of -40° C to 105° C.

Device Information⁽¹⁾

7.5 Electrical Characteristics

	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
STATIC PERFORMANCE ⁽¹⁾						
Resolution		16			Bits	
Relative accuracy				±0.0987	% of FSR	
Differential nonlinearity	16-bit monotonic			±1	LSB	
Zero code error			5	25	mV	
Full-scale error			-0.15	-1	% of FSR	
Gain error				±1	% of FSR	
Zero code error drift			±20		μV/°C	
Gain temperature coefficient			±5		ppm of FSR/°C	
Channel-to-channel matching PSRR	$R_L = 2 k\Omega, C_L = 200 pF$		15		mV	
			0.75		mV/V	

 V_{DD} = 2.7 V to 5.5 V, all specifications –40°C to 105°C (unless otherwise noted)

(1) Linearity calculated using a reduced code range of 485 to 64714; output unloaded.

(2) Ensured by design and characterization, not production tested.

Ironically INL not specified in datasheet but listed as 64 LSB in selection guide

16-bit TI String DACs

		oung DA03		INL
DAC8775	16	\$15.880 1ku	String	12
DAC8551-Q1	16	\$2.950 1ku	String	16
DAC8563T	16	\$4.066 1ku	String	12
DAC8562T	16	\$4.066 1ku	String	12
DAC8563-Q1	16	\$4.798 1ku	String	12
DAC8750	16	\$4.970 1ku	String	26
DAC8760	16	\$5.900 1ku	String	52
DAC8562-Q1	16	\$4.798 1ku	String	12
DAC8562	16	\$4.066 1ku	String	12
DAC8563	16	\$3.860 1ku	String	12
DAC8718	16	\$23.990 1ku	String	4
DAC8728	16	\$23.990 1ku	String	4
DAC8568	16	\$10.600 1ku	String	12
DAC8411	16	\$2.420 1ku	String	8
DAC8564	16	\$6.282 1ku	String	8
DAC8565	16	\$6.785 1ku	String	8
DAC8560	16	\$2.890 1ku	String	8
DAC8552	16	\$3.800 1ku	String	12
DAC8550	16	\$3.000 1ku	String	8
DAC8555	16	\$6.070 1ku	String	12
DAC8554	16	\$6.490 1ku	String	12
DAC8551	16	\$2.500 1ku	String	12
DAC8544	16	\$13.000 1ku	String	65
DAC8571	16	\$2.420 1ku	String	65
DAC8574	16	\$7.647 1ku	String	64
DAC8534	16	\$9.605 1ku	String	64
DAC8532	16	\$5.785 1ku	String	65
DAC8541	16	\$2.904 1ku	String	65
DAC8501	16	\$3.263 1ku	String	64
DAC8531	16	\$3.245 1ku	String	64

>16-bit TI R-2R DACs

INL

DAC11001B	20	\$59.000 1ku	R-2R	1
DAC11001A	20	\$35.778 1ku	R-2R	4
DAC91001	18	\$27.489 1ku	R-2R	1
DAC9881	18	\$16.359 1ku	R-2R	2
DAC82002	16	\$14.000 1ku	R-2R	2
DAC81402	16	\$8.900 1ku	R-2R	1
DAC81404	16	\$15.990 1ku	R-2R	1
DAC81001	16	\$17.589 1ku	R-2R	1
DAC80502	16	\$3.949 1ku	R-2R	1
DAC80501	16	\$2.750 1ku	R-2R	1
DAC81408	16	\$23.990 1ku	R-2R	1
DAC81416	16	\$32.990 1ku	R-2R	1
DAC80504	16	\$8.702 1ku	R-2R	1
DAC80508	16	\$9.240 1ku	R-2R	1
DAC80004	16	\$7.734 1ku	R-2R	1
DAC161S055	16	\$4.840 1ku	R-2R	3
DAC8734	16	\$19.990 1ku	R-2R	1
DAC8881	16	\$8.906 1ku	R-2R	1
DAC8871	16	\$25.000 1ku	R-2R	1
DAC8831-EP	16	\$12.013 1ku	R-2R	1
DAC8830-EP	16	\$11.664 1ku	R-2R	1
DAC8832	16	\$5.760 1ku	R-2R	1
DAC8831	16	\$6.242 1ku	R-2R	1
DAC8830	16	\$5.910 1ku	R-2R	1
DAC7664	16	\$26.378 1ku	R-2R	3
DAC7654	16	\$38.165 1ku	R-2R	3
DAC7742	16	\$13.665 1ku	R-2R	3
DAC7632	16	\$10.116 1ku	R-2R	3
DAC7642	16	\$14.741 1ku	R-2R	3
DAC7741	16	\$9.244 1ku	R-2R	3
DAC7731	16	\$8.335 1ku	R-2R	3
DAC7631	16	\$7.209 1ku	R-2R	3
DAC7641	16	\$8.334 1ku	R-2R	3
DAC7734	16	\$37.464 1ku	R-2R	2
DAC7634	16	\$24.576 1ku	R-2R	3
DAC7744	16	\$38.643 1ku	R-2R	2
DAC7644	16	\$21.282 1ku	R-2R	3
DAC716	16	\$23.642 1ku	R-2R	2
DAC715	16	\$25.556 1ku	R-2R	2
DAC714	16	\$20.350 1ku	R-2R	1

Previous code dependent glitches

Previous code dependent settling

Linear settling of DAC outputs do not affect linearity if all have same settling times (for both sampled outputs and overall transient response

Incomplete settling introduces nonlinearities in transient response and usually in settled response

Previous code dependent outputs or settling almost always introduces nonlinearities

Glitches can be many LSB in magnitude and are often previous-code dependent

Glitches in output at transition points do not introduce nonlinearities in settled outputs but may introduce distortion in continuous-time outputs

- □ Simple structure
- Inherently monotone
- □ Very low DNL
- Potential for being very fast
- Low Power Dissipation
- □ Widely Used Approach (with appropriate considerations)

Challenges:

- Managing INL
- Matching (resistors, switches)
- Leakage currents
- Large number of devices for n large (2ⁿ or 2ⁿ⁺¹ lines)
- Decoder
- Routing thermometer/bubble clocks
- Transients during Boolean transitions
- Glitches
- Switch implementation
- The venin impedance facing V_{OUT} highly code dependent

Conceptual

(minor variant where $V_{OUT}(0,...0) \neq 0$)

Practical level shift

Switch Implementation

Other switch structures (such as bootstrapped switch) used but not for basic string DACs

Switch Assignment

Challenges:

Switch Impedances

Switch Parasitics

- C_{BD} and C_{BS} can be significant and cause rise-fall times to be position dependent
- C_{GDOL} can cause "kickback" or feed-forward
- C_{GS} can slow turn-on and turn-off time of switch

Additional Challenges:

- Capacitance on V_{OUT} can be large
 - larger for p-channel devices
 - even larger for TG switches
- Switch impedances position dependent
- Kickback from switches to R-string
- Capacitance on each node (though small) of Rstring from switch
- The venin impedance facing V_{OUT} highly code dependent
- Gradient effects may cause nonlinearities since common-centroid layout may not be practical if n is large

Additional Challenges

- Delay in Decoder may be significant
- Delay in Decoder may be previous code and current code dependent
- Intermediate undesired Boolean outputs
 may occur
 - These may cause undesired opening and closing of switches
 - o Could momentarily short out taps on R-string
 - Could introduce transients on all nodes of R-string that are code and previous code dependent

Capacitive loading due to switches

- Uses matrix decoder as analog MUX (don't synthesize decoder)
- Implements binary to decimal conversion with pass transistor analog logic
- Very structured layout
- Interconnection points are switches (combination of n-channel and p-channel)

V_{OUT}

Challenges

- Still many signals to route
- Large capacitance on V_{OUT} (over 2ⁿ⁺¹ diff caps)
- Multiple previous code dependencies cause output transition time to be quite unpredictable
- Considerable transients introduced on R-string

Parasitic Capacitances in Matrix Decoder

Previous-Code Dependent Settling

Assume all C's (except those on the R-string) initially with 0V Red denotes V₃, black denotes 0V, Purple some other voltage

Previous-Code Dependent Settling

Assume all C's (except those on the R-string) were initially at 0V Red denotes V_3 , green denotes V_6 , black denotes 0V, Purple some other voltage

Transition from <010> to <101>

White boxes show capacitors dependent upon previous code <010>

Previous-Code Dependent Settling

- Assume all C's (except those on the R-string) were initially at 0V
- Red denotes V_3 , green denotes V_6 , black denotes 0V, Purple some other voltage
- Some capacitors may retain values from a previous input for many clock cycles for some inputs resulting I previous-previous dependence of even longer

- Uses tree decoder as analog MUX
- Implements binary to decimal conversion with pass transistor analog logic
- Very structured layout
- Interconnection points are switches (combination of n-channel and p-channel)
- Dramatically reduces capacitance on output and switching capacitances

 V_{OUT}

Challenges

- Still many signals to route
- Multiple previous code dependencies cause output transition time to be quite unpredictable

Matrix-Decoder in Digital Domain

Single transistor used at each marked intersection for PTL AND gates

Dramatic reduction in capacitive loading at output

Do the resistors that form part of PTL dissipate any substantial power?

No because only one will be conducting for any DAC output

Will become more complicated if both p-channel and n-channel switches needed

String DAC with Row-Column Decoder

- Dramatic reduction in decoder complexity
- Dramatic reduction of capacitive loading on output
- Changes decoder from a onedimensional to a two-dimensional solution (can be thought of as folding)
- Logic gates could be placed at each node to eliminate analog row decoder

Challenges (most were present in earlier structures too)

- Some previous code dependence
- INL large
- Difficult to cancel gradient effects in layout Switching sequencing can help a lot
- Switch impedances code dependent
- Settling times code dependent

Can this concept be extended further?

- Dramatic reduction in decoder complexity
- Dramatic reduction of capacitive loading on output
- Changes decoder from a onedimensional to a m-dimensional solution (folding)
- Logic gates could be placed at each node to eliminate analog row decoder

What about this parallel R-string?

What about this parallel R-string?

A 10-b 50-MHz **CMOS D**/A converter with 75- ω buffer

Note Dual Ladder is used !

MJM **Pelgrom** - Solid-State Circuits, IEEE Journal of, 1990 - ieeexplore.ieee.org Abstracf-A 10-b 50-MHz digital-to-analog (D/A) converter is pre-sented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, ... Cited by 109 Related articles All 3 versions Cite Save

A 10-b 50-MHz CMOS D/A converter with 75- ω buffer

Note Dual Ladder is used !

AND pixel sensor gate32x32 Matrix

MJM **Pelgrom** - Solid-State Circuits, IEEE Journal of, 1990 - ieeexplore.ieee.org Abstracf-A 10-b 50-MHz digital-to-analog (D/A) converter is pre-sented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, ... Cited by 109 Related articles All 3 versions Cite Save

Stay Safe and Stay Healthy !

End of Lecture 13