EE 505

Lecture 13

String DACs
Current Steering DACs

What DAC Architectures are Actually Used?

Listing from Texas Instruments March 12023
String 168
R-2R 79
Current Source 52
MDAC 23
Current Sink 17
SAR 9
Pipeline 7
Delta Sigma 4
1-Steering 3
Current Steering 2

Support \& Community

TEXAS
InSTRUMENTS

DAC8532 Dual Channel, 16-Bit, Low Power, Serial Input Digital-To-Analog Converter

1 Features

- 16-Bit Monotonic Over Temperature
- MicroPower Operation: $500 \mu \mathrm{~A}$ at 5 V
- Power-On Reset to Zero-Scale
- Power Supply: 2.7 V to 5.5 V
- Settling Time: $10 \mu \mathrm{~s}$ to $\pm 0.003 \%$ FSR
- Ultra-Low AC Crosstalk: -100 dB Typ
- Low-Power Serial Interface With Schmitt-Triggered Inputs
- On-Chip Output Buffer Amplifier With Rail-to-Rail Operation
- Double-Buffered Input Architecture
- Simultaneous or Sequential Output Update and Powerdown
- Available in a Tiny VSSOP-8 Package

2 Applications

- Portable Instrumentation
- Closed-Loop Servo Control
- Process Control
- Data Acquisition Systems
- Programmable Attenuation
- PC Peripherals

3 Description

The DAC8532 is a dual channel, 16 -bit digital-toanalog converter (DAC) offering low power operation and a flexible serial host interface. Each on-chip precision output amplifier allows rail-to-rail output swing to be achieved over the supply range of 2.7 V to 5.5 V . The device supports a standard 3 -wire serial interface capable of operating with input data clock frequencies up to 30 MHz for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

The DAC8532 requires an external reference voltage to set the output range of each DAC channel. The device incorporates a power-on reset circuit which ensures that the DAC outputs power up at zero-scale and remain there until a valid write takes place. The DAC8532 provides a flexible power-down feature, accessible over the serial interface, that reduces the current consumption of the device to 200 nA at 5 V .

The low-power consumption of the device in normal operation makes it ideally suited to portable batteryoperated equipment and other low-power applications. The power consumption is 2.5 mW at 5 V , reducing to $1 \mu \mathrm{~W}$ in power-down mode.

The DAC8532 is available in a VSSOP-8 package with a specified operating temperature range of $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$.

7.5 Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V , all specifications $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ (unless otherwise noted)

(1) Linearity calculated using a reduced code range of 485 to 64714 ; output unloaded.
(2) Ensured by design and characterization, not production tested.

Ironically INL not specified in datasheet but listed as 64 LSB in selection guide

16-bit TI String DACs

DAC8775	16	\$15.880 \| 1ku	String	12	
DAC8551-Q1	16	\$2.950 \| 1 ku	String	16	
DAC8563T	16	\$4.066 \\| 1 ku	String	12	
DAC8562T	16	\$4.066\|1 ku	String	12	
DAC8563-Q1	16	\$4.798\|1ku	String	12	
DAC8750	16	\$4.970 \| 1ku	String	26	
DAC8760	16	\$5.900 \| 1 ku	String	52	
DAC8562-Q1	16	\$4.798\| 1 ku	String	12	
DAC8562	16	\$4.066\|1ku	String	12	
DAC8563	16	\$3.860 \| 1 ku	String	12	
DAC8718	16	\$23.990\| 1ku	String	4	
DAC8728	16	\$23.990 \| 1ku	String	4	
DAC8568	16	\$10.600 \| 1 ku	String	12	
DAC8411	16	\$2.420 \| 1 ku	String	8	
DAC8564	16	\$6.282 \| 1 ku	String	8	
DAC8565	16	\$6.785\|1ku	String	8	
DAC8560	16	\$2.890 \| 1ku	String	8	
DAC8552	16	\$3.800\|1 ku	String	12	
DAC8550	16	\$3.000\|1ku	String	8	
DAC8555	16	\$6.070 \| 1ku	String	12	
DAC8554	16	\$6.490\|1ku	String	12	
DAC8551	16	\$2.500 \| 1 ku	String	12	
DAC8544	16	\$13.000\| 1 ku	String	65	
DAC8571	16	\$2.420 \| 1 ku	String	65	
DAC8574	16	\$7.647 \| 1ku	String	64	
DAC8534	16	\$9.605 \| 1ku	String	64	
DAC8532	16	\$5.785 \| 1ku	String	65	
DAC8541	16	\$2.904 \| 1 ku	String	65	
DAC8501	16	\$3.263\|1ku	String	64	
DAC8531	16	\$3.245 \| 1 ku	String	64	

>16-bit TI R-2R DACs

DAC11001B	20	\$59.000\|1 ku	R-2R	1	
DAC11001A	20	\$35.778 \| 1ku	R-2R	4	
DAC91001	18	\$27.489 \\| 1ku	R-2R	1	
DAC9881	18	\$16.359 \| 1 ku	R-2R	2	
DAC82002	16	\$14.000 \| 1 ku	R-2R	2	
DAC81402	16	\$8.900\| 1ku	R-2R	1	
DAC81404	16	\$15.990 \| 1ku	R-2R	1	
DAC81001	16	\$17.589 \| 1 ku	R-2R	1	
DAC80502	16	\$3.949 \| 1ku	R-2R	1	
DAC80501	16	\$2.750\|1ku	R-2R	1	
DAC81408	16	\$23.990 \| 1ku	R-2R	1	
DAC81416	16	\$32.990 \| 1ku	R-2R	1	
DAC80504	16	\$8.702 \| 1ku	R-2R	1	
DAC80508	16	\$9.240 \| 1ku	R-2R	1	
DAC80004	16	\$7.734 \| 1ku	R-2R	1	
DAC161S055	16	\$4.840 \| 1ku	R-2R	3	
DAC8734	16	\$19.990\|1ku	R-2R	1	
DAC8881	16	\$8.906\|1ku	R-2R	1	
DAC8871	16	\$25.000 \| 1 ku	R-2R	1	
DAC8831-EP	16	\$12.013 \| 1 ku	R-2R	1	
DAC8830-EP	16	\$11.664\|1ku	R-2R	1	
DAC8832	16	\$5.760 \| 1 ku	R-2R	1	
DAC8831	16	\$6.242 \| 1ku	R-2R	1	
DAC8830	16	\$5.910\| 1 ku	R-2R	1	
DAC7664	16	\$26.378\| 1 ku	R-2R	3	
DAC7654	16	\$38.165 \| 1 ku	R-2R	3	
DAC7742	16	\$13.665 \| 1 ku	R-2R	3	
DAC7632	16	\$10.116\|1ku	R-2R	3	
DAC7642	16	\$14.741\|1ku	R-2R	3	
DAC7741	16	\$9.244 \| 1ku	R-2R	3	
DAC7731	16	\$8.335 \| 1ku	R-2R	3	
DAC7631	16	\$7.209 \| 1ku	R-2R	3	
DAC7641	16	\$8.334 \| 1 ku	R-2R	3	
DAC7734	16	\$37.464 \| 1ku	R-2R	2	
DAC7634	16	\$24.576 \| 1 ku	R-2R	3	
DAC7744	16	\$38.643 \| 1 ku	R-2R	2	
DAC7644	16	\$21.282 \| 1 ku	R-2R	3	
DAC716	16	\$23.642 \| 1 ku	R-2R	2	
DAC715	16	\$25.556 \| 1 ku	R-2R	2	
DAC714	16	\$20.350 \| 1ku	R-2R		

DAC Performance Issues and Concerns

DAC Performance Issues and Concerns

Incomplete Nonlinear Settling

Complete with glitch
Incomplete with glitch

Incomplete with big glitch

DAC Performance Issues and Concerns

Previous code dependent glitches
Previous code dependent settling

DAC Performance Issues and Concerns

Linear settling of DAC outputs do not affect linearity if all have same settling times (for both sampled outputs and overall transient response

Incomplete settling introduces nonlinearities in transient response and usually in settled response

Previous code dependent outputs or settling almost always introduces nonlinearities

Glitches can be many LSB in magnitude and are often previous-code dependent

Glitches in output at transition points do not introduce nonlinearities in settled outputs but may introduce distortion in continuous-time outputs

R-String DAC

Conceptual
\square Simple structure
\square Inherently monotone
\square Very low DNL
Potential for being very fast
\square Low Power Dissipation
\square Widely Used Approach (with appropriate considerations)

Challenges:

- Managing INL
- Matching (resistors, switches)
- Leakage currents
- Large number of devices for n large (2^{n} or $2^{\mathrm{n}+1}$ lines)
- Decoder
- Routing thermometer/bubble clocks
- Transients during Boolean transitions
- Glitches
- Switch implementation
- Thevenin impedance facing $\mathrm{V}_{\text {OUT }}$ highly code dependent

R-String DAC
 (minor variant where $\mathrm{V}_{\text {out }}(0, \ldots 0) \neq 0$)

Practical level shift

Switch Implementation

- Large number required for large resolution
- Simple structure often used

- Good when switch terminals near gnd
- Will not turn on when terminals near V_{DD}
- Good when switch terminals near $V_{D D}$
- Will not turn on when terminals near gnd
- Use devices where cross-over occurs
- Good for both high and low term voltages
- Extra clock signal required
- Try to avoid this complexity

Other switch structures (such as bootstrapped switch) used but not for basic string DACs

Switch Assignment

Challenges:

Switch Impedances

Switch Impedances

$R_{\text {SWIG }}$

$R_{\text {SWIG }}$

Switch impedance significantly both position and device size dependent

$$
\mathrm{V}_{\mathrm{Gp}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gn}}=\mathrm{V}_{\mathrm{DD}}
$$

Switch Parasitics

- $\mathrm{C}_{B D}$ and C_{BS} can be significant and cause rise-fall times to be position dependent
- $\mathrm{C}_{G D O L}$ can cause "kickback" or feed-forward
- $\mathrm{C}_{G S}$ can slow turn-on and turn-off time of switch

R-String DAC

Additional Challenges:

- Capacitance on $\mathrm{V}_{\text {OUt }}$ can be large
- larger for p-channel devices
- even larger for TG switches
- Switch impedances position dependent
- Kickback from switches to R-string
- Capacitance on each node (though small) of Rstring from switch
- Thevenin impedance facing $\mathrm{V}_{\text {Out }}$ highly code dependent
- Gradient effects may cause nonlinearities since common-centroid layout may not be practical if n is large

R-String DAC

Additional Challenges

- Delay in Decoder may be significant
- Delay in Decoder may be previous code and current code dependent
- Intermediate undesired Boolean outputs may occur
- These may cause undesired opening and closing of switches
- Could momentarily short out taps on R-string
- Could introduce transients on all nodes of R-string that are code and previous code dependent

R-String DAC

R-String DAC

- Uses matrix decoder as analog MUX (don't synthesize decoder)
- Implements binary to decimal conversion with pass transistor analog logic
- Very structured layout
- Interconnection points are switches (combination of n-channel and p-channel)

Challenges

- Still many signals to route
- Large capacitance on $\mathrm{V}_{\text {OUT }}$ (over $2^{\mathrm{n}+1}$ diff caps)
- Multiple previous code dependencies cause output transition time to be quite unpredictable
- Considerable transients introduced on R-string

R-String DAC

Parasitic Capacitances in Matrix Decoder

R-String DAC

Previous-Code Dependent Settling Assume all C's (except those on the R-string) initially with OV Red denotes V_{3}, black denotes 0V, Purple some other voltage

R-String DAC

Previous-Code Dependent Settling

Assume all C's (except those on the R-string) were initially at 0V

R-String DAC

Transition from <010> to <101> White boxes show capacitors dependent upon previous code <010>

Previous-Code Dependent Settling

- Assume all C's (except those on the R -string) were initially at 0 V
- Red denotes V_{3}, green denotes V_{6}, black denotes 0 V , Purple some other voltage
- Some capacitors may retain values from a previous input for many clock cycles for some inputs resulting I previous-previous dependence of even longer

R-String DAC

- Uses tree decoder as analog MUX
- Implements binary to decimal conversion with pass transistor analog logic
- Very structured layout
- Interconnection points are switches (combination of n-channel and p-channel)
- Dramatically reduces capacitance on output and switching capacitances
$V_{\text {out }}$ Challenges
- Still many signals to route
- Multiple previous code dependencies cause output transition time to be quite unpredictable

R-String DAC

Matrix-Decoder in Digital Domain

Single transistor used at each marked intersection for PTL AND gates
Dramatic reduction in capacitive loading at output
Do the resistors that form part of PTL dissipate any substantial power?
No because only one will be conducting for any DAC output
Will become more complicated if both p-channel and n -channel switches needed

R-String DAC

String DAC with Row-Column Decoder

- Dramatic reduction in decoder complexity
- Dramatic reduction of capacitive loading on output
- Changes decoder from a onedimensional to a two-dimensional solution (can be thought of as folding)
- Logic gates could be placed at each node to eliminate analog row decoder

Challenges (most were present in earlier structures too)

- Some previous code dependence
- INL large
- Difficult to cancel gradient effects in layout

Switching sequencing can help a lot

- Switch impedances code dependent
- Settling times code dependent

R-String DAC

Can this concept be extended further?

- Dramatic reduction in decoder complexity
- Dramatic reduction of capacitive loading on output
- Changes decoder from a onedimensional to a m-dimensional solution (folding)
- Logic gates could be placed at each node to eliminate analog row decoder

R-String DAC

What about this parallel R-string?

R-String DAC

What about this parallel R-string?

R-String DAC

R-String DAC

A 10-b 50-MHz CMOS D/A converter with 75-w buffer
MJM Pelgrom - Solid-State Circuits, IEEE Journal of, 1990 - ieeexplore.ieee.org Abstracf-A 10-b $50-\mathrm{MHz}$ digital-to-analog (D/A) converter is pre-sented which is based on a
Note Dual Ladder is used! dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, ..

R-String DAC
 n \downarrow
 $\mathrm{n}=\mathrm{n}_{1}: \mathrm{n}_{2}$

A 10-b 50-MHz CMOS D/A converter with 75-w buffer

Note Dual Ladder is used!

: AND pixel sensor gate

 32×32 MatrixMJM Pelgrom - Solid-State Circuits, IEEE Journal of, 1990 - ieeexplore.ieee.org Abstracf-A 10-b $50-\mathrm{MHz}$ digital-to-analog (D/A) converter is pre-sented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, ... Cited by 109 Related articles All 3 versions Cite Save

Stay Safe and Stay Healthy !

End of Lecture 13

